The Dirichlet problem for degenerate complex Monge–Ampere equations
نویسندگان
چکیده
منابع مشابه
The Dirichlet Problem for Degenerate Complex Monge-ampere Equations
The Dirichlet problem for a Monge-Ampère equation corresponding to a nonnegative, possible degenerate cohomology class on a Kähler manifold with boundary is studied. C1,α estimates away from a divisor are obtained, by combining techniques of Blocki, Tsuji, Yau, and pluripotential theory. In particular, C1,α geodesic rays in the space of Kähler potentials are constructed for each test configurat...
متن کاملThe Dirichlet Problem for Complex Monge-ampère Equations and Applications
We are concerned with the Dirichlet problem for complex MongeAmpère equations and their applications in complex geometry and analysis. 2000 Mathematical Subject Classification: 35J65, 35J70, 53C21, 58J10, 58J32, 32W20, 32U05, 32U35, 32Q15.
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملOn the Dirichlet boundary problem for quasi–degenerate elliptic linear equations
Motivated by the structure of the Dynamics Programming Equations relative to Controlled Diffusions we study the Dirichlet value boundary problem governed by quasi–degenerate elliptic partial differential equations of second order. Interior properties of the solution involved to the Maximum Principle are also considered in the paper. 2000 Mathematics Subject Classification: 35B50, 35B37, 49L25
متن کاملOn the Dirichlet Problem for Non-totally Degenerate Fully Nonlinear Elliptic Equations
We prove some comparison principles for viscosity solutions of fully nonlinear degenerate elliptic equations that satisfy conditions of partial non-degeneracy instead of the usual uniform ellipticity or strict monotonicity. These results are applied to the well-posedness of the Dirichlet problem under suitable conditions at the characteristic points of the boundary. The examples motivating the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2010
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2010.v18.n1.a6